On the Ingleton-Violating Finite Groups and Group Network Codes

نویسندگان

  • Wei Mao
  • Matthew Thill
  • Babak Hassibi
چکیده

It is well known that there is a one-to-one correspondence between the entropy vector of a collection of n random variables and a certain group-characterizable vector obtained from a finite group and n of its subgroups [1]. However, if one restricts attention to abelian groups then not all entropy vectors can be obtained. This is an explanation for the fact shown by Dougherty et al [2] that linear network codes cannot achieve capacity in general network coding problems (since linear network codes form an abelian group). All abelian group-characterizable vectors, and by fiat all entropy vectors generated by linear network codes, satisfy a linear inequality called the Ingleton inequality. In this paper, we study the problem of finding nonabelian finite groups that yield characterizable vectors which violate the Ingleton inequality. Using a refined computer search, we find the symmetric group S5 to be the smallest group that violates the Ingleton inequality. Careful study of the structure of this group, and its subgroups, reveals that it belongs to the Ingleton-violating family PGL(2, p) with primes p ≥ 5, i.e., the projective group of 2× 2 nonsingular matrices with entries in Fp. This family of groups is therefore a good candidate for constructing network codes more powerful than linear network codes. Index Terms Finite groups, entropy vectors, Ingleton inequality, network coding, network information theory. Portions of this work were presented at the Forty-Seventh Annual Allerton Conference on Communication, Control, and Computing, 2009 and the 2010 IEEE International Symposium on Information Theory. The authors are with the Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125 USA (email: [email protected], [email protected], [email protected]). This work was supported in part by the National Science Foundation under grants CCF-0729203, CNS-0932428 and CCF1018927, by the Office of Naval Research under the MURI grant N00014-08-1-0747, and by Caltech’s Lee Center for Advanced Networking. 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ingleton-Violations in Finite Groups

It is well known that there is a one-to-one correspondence between the entropy vector of a collection of n random variables and a certain group-characterizable vector obtained from a finite group and n of its subgroups [1]. However, if one restricts attention to abelian groups then not all entropy vectors can be obtained. This is an explanation for the fact shown by Dougherty et al [2] that lin...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Cyclic Orbit Codes with the Normalizer of a Singer Subgroup

An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

Efficiency of Anti-Hourglassing Approaches in Finite Element Method (TECHNICAL NOTE)

one of the simplest numerical integration method which provides a large saving in computational efforts, is the well known one-point Gauss quadrature which is widely used for 4 nodes quadrilateral elements. On the other hand, the biggest disadvantage to one-point integration is the need to control the zero energy modes, called hourglassing modes, which arise. The efficiency of four different an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1202.5599  شماره 

صفحات  -

تاریخ انتشار 2012